Photochemical growth of silver nanoparticles on c(-) and c(+) domains on lead zirconate titanate thin films.

نویسندگان

  • Steve Dunn
  • Paul M Jones
  • Diego E Gallardo
چکیده

The photochemical growth of silver nanoparticles on the negative domains of lead zirconate titanate thin films is reported. A sample of highly [100] orientated lead zirconate titanate, with a ratio of 30:70, that was 65-70 nm thick grown on Pt-coated MgO was poled by use of piezoresponse force microscopy to produce defined regions of surface positive and negative polarization. A comparison between the growth of silver nanoparticles on the surface of the lead zirconate titanate when illuminated with two sources of super band gap UV is given. In both cases the wavelength of illumination leads to growth on the positive domains but only illumination with a Honle H lamp, with a high photon output over 250-200 nm, caused significant growth of silver nanoparticles on the negative domain. The deposition on the negative domain is explained in terms of changed band bending due to the excitation of electrons into the conduction band, the rate of decay to the ground state, and dimensions of the ferroelectric film. The rate of deposition of silver nanoparticles on the negative domains is approximately half that on the positive domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of microwave annealing temperatures on lead zirconate titanate thin films.

Lead zirconate titanate (Pb(1.1)(Zr(0.52)Ti(0.48))O(3)) thin films of thickness 260 nm on Pt/Ti/SiO(2)/Si substrates were densified by 2.45 GHz microwave annealing. The PZT thin films were annealed at various annealing temperatures from 400 to 700 °C for 30 min. X-ray diffraction showed that the pyrochlore phase was transformed to the perovskite phase at 450 °C and the film was fully crystalliz...

متن کامل

Polarization reorientation in ferroelectric lead zirconate titanate thin films with electron beams

Ferroelectric domain patterning with an electron beam is demonstrated. Polarization of lead zirconate titanate thin films is shown to be reoriented in both positive and negative directions using piezoresponse force and scanning surface potential microscopy. Reorientation of the ferroelectric domains is a response to the electric field generated by an imbalance of electron emission and trapping ...

متن کامل

Optical properties of PZT thin films deposited on a ZnO buffer layer

The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model ...

متن کامل

Thickness dependence of structural and electrical properties in epitaxial lead zirconate titanate films

We have studied the effect of misfit strain on the microstructure and properties of ferroelectric lead zirconate titanate thin films. We have changed the misfit strain by varying the film thickness and studied the thickness effect on the domain formation of epitaxial PbZr0.2Ti0.8O3 ~PZT! films grown by pulsed laser deposition on ~001! LaAlO3 substrates with La0.5Sr0.5CoO3 ~LSCO! electrodes. The...

متن کامل

Microstructural and compositional analysis of strontium-doped lead zirconate titanate thin films on gold-coated silicon substrates.

This article discusses the results of transmission electron microscopy (TEM)-based characterization of strontium-doped lead zirconate titanate (PSZT) thin films. The thin films were deposited by radio frequency magnetron sputtering at 300 degrees C on gold-coated silicon substrates, which used a 15 nm titanium adhesion layer between the 150 nm thick gold film and (100) silicon. The TEM analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 28  شماره 

صفحات  -

تاریخ انتشار 2007